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Abstract

Systems conuining both compact real parametric uncertainty and
frequency-weighted bounded operator unceruinty are addressed. It is
shown that any parameter adaptive contol system is robustly stable pro-
vided only that: (1) the unknown parameters lie in & known compact con-
vex set, (2) the control design rule is lipschitzian, (3) the contol design
rule would produce a robust controller if given perfect parameter informa-
ton, and (4) a specified robust parameter estimation algorithm is applied in
lieu of perfect parameter information. It is also shown that the asymptotic
robust performance level may be made arbizarily close to that of the non-
adaptive design which would result from perfect parameter information.

L Introduction

Most adaptive control theory begins with a plant description contain-
ing uncentain real parameters. However, it is generally recognized that a
specific paramewic plant description will never exactly describe & physical
system's response, regardless of the choice of the parameters. As a conse-
quence, the issue of nonparametric dynamical uncertainty in addidon to
parametric uncertainty bas received a great deal of anenton from the adap-
tve contro] communry. A number of robust adaptive contol results have
already been obtained (e.g., [13), [15], [14], [4]), [6]). The community is
currendy seeking 1w expand the definition of robustness and the collection
of design techniques.

This paper focuses on a notion of robustmess which is common in
robust (nonadaptive) control theory and practice. Specifically, we address
stabiliry and performance in the presence of two types of uncertainty:
parametnc uncerunty characterized by an a priori known convex member-
shup set, and nonparametric uncertainty as characterized by an a priori
known frequency domain magnitude bound. Frequency weighted uncer-
tainty bounds have been used to characterize modeling errors since at least
the appearance of (2], and remain popular in sensitivity and robusmess
analyses (e.g.. [19]. (3], (20]. {21}, (17]). We adopt the not-uncommon
approach of absorbing the weighting function describing the frequency
domain magnitude bound into the representation of the known portion of
the plant. The residual normalized uncertainty is characterized by the
operator norm induced by taking L? or fading-memory L2 norms on the
input and output of the uncertain operator. Since the H™ norm of an LTI
(linear Gme-invariant) transfer function is its induced L? norm, the uncer-
rinty set we treat covers the weighted ball-in-H = with the same weighting
function.

There are three themes to our work: perfect parameter information
tuned-systern robusmess, robust parameter estimation, and the interplay of
these in the overall system. Of course, the ultimate requirement is that the
overall systern ssusfy robust performance objectives. A reasonable prere-
quisite is the soluton of the subproblem of robust control given perfect
pararoeter informanon and the subproblem of robust perameter estimation
given no control objectives.

In earlier work we provided the solution to these subproblems. The
robust control subproblem involves analysis of a set of (plant, controller)
pairs, where the set is indexed by the value of the plant parameter vector,
and the paired costroller is determined through the on-line design rule. In
{7] and (10] the robust control subproblem is defined in detail, and a mode)
reference example is analyzed through the use of structured singular value
theory. Other spproaches to analyzing systems with both parametric
degrees of freedom and ic bounded-opersior uncertainty sre
given in (1), {5], and (18].

Pramod P. Khargonekar *+

Gunter Stein +#

Al

The robust perameter estimation subproblem involves reduction of
parameter uncertainty through the use of measurements obtained on-line.
The novelty of the estimation problem, as we have posed it, is that the
measurements and physical process are not corrupted by exogenous sto-
chastic noise, but rather by the presence of nonparametric dynamic uncer-
tinty within the system. Others have addressed this issue with time-
domain characterizations of uncertainty (which do not mawch the tradinonal
robust-control charscterizations), or by mapping the frequency-domain
uncertainty bound to a (generally) conservative pointwise-in-ume signal
bound. In contrast, our approach is based on a relative deadzone technique
using a nonconservative perturbation signal energy (L?) bound (which is
described in various levels of deuil in (8], [11] and (12]). This bound is
arguably the most natural and tightest bound for our problem formulaton
since the 5™ operator norm corresponds direcdy with the induced-L? gain
of the operator. Loosely speaking, our parameter adjustment mechanism
provides nonincreasing parameter errors, with strictly decreasing parameter
errors whenever the parameter error is distinguishable from zero based on
available measurements.

The remaining task is the integration of the control and esumation
techniques, and analysis of the overall system. In this paper, we state a
new stability result: the combination of perfect parameter informanon
robust subility and the use of the robust parameter estimaton process
together imply bounded-L2-input - bounded-L 2-output swbility. The BIBO
property is also obtained with a slightly modified L2 norm which incor-
porates exponential de-weighting of older information.

The underlying subility concept is simple: if the system behaves as if
the parameter error is zero, then the perfect-informaton robustmess analysis
guarantees that the system is behaving in & smble fashion; if the system
behaves as if the parameter error is ponzero, then the robust esumanon
process reduces the euclidean norm of the parameter error vector (which
cannot go on forever since the norm is bounded below by zer0). A formal
version of this argument is given in this paper.

Robust performance results are given as well. Robust performance is
often characterized in terms of the worst-case porm of a chosen ourput sig-
nal, given an assumed norm on the input signals, where the worst-case is
takes with respect 10 dynamic uncertainty. In this paper, it is shown that
the asymptotic performance of the overall adaptive system is po worse than
the guaranteed robust performance of the same systers given perfect
parameter information. Remarkably, the parametric uncertainty does not
degrade the asymptotic system performance guarantees. Unfortunately, the
transient performance is not quantified, and can be arbitrarily poor.

. Preliminaries
A. Notaftion
Consider a function x : IR* —» RV Define the norm
“
4
Nx NS = {e"’“""xr(t)x(t)dt m

where the superscript © is omitted when ¢ = 0, and the subscript ¢ is omit-
ted when ¢ = =, When lx 119 exists for all finite t, x is said to be 1n
L9, When i1x 119 is uniformly bounded over all 7 > 0. x is sad to be
in L%, When 0 = 0, we omit it from the superscript, and use the more
common potion x€L¥ or xeL2.

For a vector 6, let 161 denote the euclidean norm.




- Let H™ denote the space of transfer functions 7 (s) which are analync
and bounded in the open right half plane. Let S° be the shift operator
defined by

$°T(s) = T(s-0). 2

Let S°H™ be the space of mansfer functions 7 (s) such that S°T €H™. In
this context, G will be referred to as & "fading memory time constant.”

For T(s)e H™, we define HT If . 1o be the usual H™ norm (see [20)).
Recall that 1T 1, is the operator norm induced by the choice of the
L?[0.=) norm on the input and output signals of T. We will use 11T 11,
1o denote the induced-L? norm on T when T is not LTI (Linear Time-
Invariant). Similarly, 1111 % will denote the induced-L2° norm Likewise,
define the shifted H™ norm

0T i §e = 1IS°T liy- . 3)
Table 1 summarizes the norm notation used in this paper. Note that

signal norms take the form ™ if+ {20 PeEDA" whije operator norms take
the form ™ 1111 5730 Proe .

Table 1
Norm Notation Summary

1-1 Euclidean Norm
1]-]19-! signal norm (equadon (1))
1119 signal norm with ¢ = e

11 signal nomn witht = e and o = 0
ti g shifted 4™ norm (equaton (3))
usyal H* norm

THI™

THIRA L9 -induced operator norm
Helh L*.induced operator norm

Miscellaneous: For a vector V, "D (V)" denotes a diagonal martrix
whose row i column i element equals the i"* element of the vector V.
Superscript T denotes mansposition. Throughout the paper, © is a parucu-
lar fixed and known nonnegative number.

B. System Assumprions

The system is assumed to take the form of Figure 1. In the figure,
up. ¥p. and r denote, respecuvely, the actuated plant input, measured plant
output, and exogenous command input. The signal d, is a fictidous input
which will be added later 1o account for the effect of nonzero inital condi-
dons.

2 A

+ P ¢
g
G
UP yp
K | r
w -
—{ D6,
\ ")

Figure 1. System Structure

_‘nzem!fetmxrix(i is the kmown portion of the plant. The tansfer
mavix K is the fixed portion of the conwoller. Both G and K are proper
and LTL and GeSTH™. The submatrix Gy, which maps the input g w0
the ourput y, is in SH™.

The symbol Als) is an mbigary (unknown) transfer function which,
for some specific known fading memory time constant © 2 0, is anuytic on
Re(s) > 0 and satisfies

HANG S 1. @)

Note that for the special case 0 = 0, the et of allowed A covers the closed
unit ball in H*=,

Vectors 6p and Oc are, respectively, the unknown plant parameter
vector and the adjusuable contoller parameter vector.

Later, ¢ will be called the regression vector. 6, (1) will denote the
estimate of 6 at time t, and 8 (r) will denote the error 6, - 0, (1).

We treat only the case in which the controller’s parametric structure is
fixed. and only cerain parumeter values may vary. These congoller
parameters are defined by a design rule which maps plant parameter values
to controller parameter values, that is,

0.(1) = £, (Bp(0)). (5
We will assume only that f, is lipschitzian on the arbit (8, () - ¢ 2 0},
We assume the prior knowledge
0’19, (6)
where 6; is an arbitrary compact convex seL

This prior knowledge may come from an undersaanding of the physi-
cal meaning of the parameters. In this case, it may be useful 10 thunk of
the physical parameters as having a unique comrect value. However, the
system performance depends only upon the system input-output response,
and, from this input-output perspective, there does not necessarily exist a
unique choice for the "correct” plant parameter vector.

A basic principle of mathematical modeling is that no model can be
verified through empirical observation; models may only be invahdated
Thus it is reasonable to define the set of “correct” plant parameters
{denoted ©;) for a particular fixed plant input-output mapping P as

8, := {6 : the collection of all responses yp = Pup
does not contradict 6, = 6}, M

where “all reponses” means all those gencrated by all up. These are
correct parameters in the sense that they produce a mathemancal model
which cannot be invalidated by any experiment.

Of course, in testing for a contradiction of 6, = € in the above
definidon, one must evaluate 6, in the context of the math mode! in which
it is embedded. Specifically, for our plant representtion, any choice of 6p
in ©p is "correct” if there exists a A satisfying (4) such that Figure 1 pro-
duces the actual plant’s input-output response for all possible inputs.

Throughout this paper, the symbol 8, represents any elemen: of 65,
and not some partcular unique physical parameter value. Furthermore, no
expression depends upon the particular choice of 8, within 8.

Note the distinction between @5 and 7. The set 8, represents the
prior knowledge of set of possible plant parameters; its significance is that
it limits the set in which we need search for 8p. The set ©; is the plant-
specific (hence unknown) set of values of 8, which may be regarded as
correct for the particular plant.

Remark: the system of Figure | represents a broad class of both
direct adaptive contol systems (as shown in (9] and [10]), and indirect
adaptive conwmol systems (as shown in {11]).

Re - «. The feedback representation of embedded unceruindes is
based oi.. "t ~° {16]. As is now common with such representatons, any
frequency--- - ient weighting function on the uncertainty A is absorbed
into the symuo: G.

C. [Initial Condition Assumptions

Assume, for the moment, that d, of Figure ! is zero, but that G and
A may have nonzero initial conditions. In this section, we show that an
equivalent system is produced by including a nonzero d, and assuming that
the initial conditions of G and A sre zero. Moreover, 11d, 1%/, as a func-
tion of time, has a known exponentially decaying bound.

The system will be equivalent in the sense that Figure 1 will continue
to describe the input output response of the system, without modification of
the assumptions regarding the sets in which A and 6p lic, and without
altering the value of G. The time histories of up and yp are precisely the
same, although the definitions of the intcrnal signals ¢, v, d., d,, and g are
modified to reflect the fact that the transient effects are algebraically re-
located in the equations.

1. Initial Condition of G
If G has nonzero initial conditions, its outputs are the superposiaon of
a natural response and a forced response:
¢=0¢y +¢r
vV =vy+Ve 8)
Yp = YeN + YrF.

e o
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=Since GeS°H™ and is known, all of the parural responsc terms decay
exponentally, with a known maximum me constant
The assumed prior knowledge of the inital conditions is an upper
bound on the “amplicude”™ of the ecxpomendal response, that is,
Iypn (1)1 < ce™, where ¢ and ¢ are known a priori. Note that a decay-
ing exponential bound on a signal implies that the 11:11% norm of the sig-
nal also has a bound with an exponential decay rate of at least ©.

2. Ininal Condition of Unmodeled Dynamics

Note that when the input to A is zero for all time, the assumption
1A% < 1 implies that the output of A is zero (more precisely, equivalent
1o zero in the L*° norm). Consequendy, when A is thought of as a
represenuation of unmodeled dynamics, the assumption 11A11S < 1 is gen-
erally reasonable only if the unmodeled dynamics are initially at rest. Here
we will modify the representation of unmodeled dynamics to remove the
at-rest assumption while retaining the operator norm bound on A.

Since the unmodeled dynamics need not be linear, we cannot describe
their output as the superposition of & forced response and a natural
response which is independent of the unmodeled dynamics input. Insiead,
we decompose the toul effect of unmodeled dynamics into the sum of a
component d which is smaller than v in norm, and & residual component
dy. The residual dy is mor assumed to be independent of v. but is
assumed to satisfy ldy 11%? < ce™ for some known ¢, irrespective of v.

Now the total operator from v to 4 + dy need not produce an output
of zeto even when v is zero.

3. Equivalens A1-Rest System with One Added Inpw
Now define
£ =G5 0p ~Gpup) = G5l Opr = Gotp) + Gilypn. 9

[6 v y‘p]:=c[g‘ u,] (10)

(Note that y» = yp.) The systemn of Figure 1 with non-rest initial condi-
tions on G and A is equivalent to the system of Figure 2 with G and A
wnitally at rest.

dn
d N Pl
| 4 ] G, \GN/ You ¥ Vx
d - . -1\]
95 | R — G, \Gll,' You * Oy
G, Yo B1.
LA
-+ R A
v

o G
Yp = Y

Figure 2. Manipulation of the Effects of Noo-Rest Initial Conditions

Although superposition need not apply for A, for any signals g and b,
one can cover the set (c: ¢ = A(@ +b), H1AII S 1} by the set
{c: c=Aa+A"b, NANSSL, 1IA”11S S 1). Consequenty, the
various inputs shown in Figure 2 can be further algebraically moved to the
node which defines g, withgout changing the definitons of §, 6, and v.
The net input at the § node is

d, = dy + Gilypy + 8GyGilypy + )
+6}(G1G3lypn + tw). (1

Furthermore, since vy, ¢y, and ypy have exponential decaying bounds,
their 114119/ porms have an exponental decay rate. Since a known
induced-L%® norm bound is known for G, A, and 8, (recall 8, is com-
pact), 8 known exponentially decaying bound exists for 11d, 1194:

d, 119 sd ()= dye™ Vi (12)
for some known function d, and positive constant d,.

The result of this last algebraic manipulation is a system strucrure
exactly as shown in Figure 1. The intenal signals are different (¢ would
appexr in place of ¢, et cetern), d, is now nonzero, and G and A are now
initially at rest. The signals xp and yp are unchanged.

S

To avoid a proliferation of notaton, let ¢, v, g, and 4 be re-defined
hereafier so that we may use Figure | as a representanon of the system.
with G and A initally & rest, and 4, not necessarily zero but sansHing a
kmown exponentially decaying bound on |1d, 1194,

III. Perfect Parameter Information Robust Control

The concept of robust subility can be exiended to the case of
unspecific tuned adaptive systems. As a first step, we represent the system
of Figure 1 in the form shown in Figure 3. Note that M of Figure 3 has
an input r, and outputs y and y, which are not shown in Figure i. The
added output y is simply a signal one wishes to geep small. For example,
y could be chosen 10 be the command tracking error, r-y,. Linear filters
can be used to capture the relative importance of different frequencies.
these are assumed 0 be absorbed into M. This is all fairly standard in
recent robust multivariable control literature.

d A v

=

Tx Yx

Figure 3. Perfect Parameter Information Tuned System

The signals r, and y, sre included for a pon-standard reason, namely
to ensure soructural robustness of the robust performance defininon to be
given later. For now, it suffices to know that 7, and y, are any added sys-
tem inputs or outputs which do oot involve added dymamics. That is,
given a suate-space represcotation of M, y, is any linear combinagoon of the
states (arbitrary output matrix associated with y,) and 7, enters the suate
derivative definiton in any linear fashion (arbimrary input mamx associated
with 7,), but no smtes have been added 10 M 1 allow the inclusion of r,
and y,.

Note that the system of Figure 1, excluding the 4 block. is known g
priori except for the parameter vector 8p and the conwoller gans 6.
However, snce the desired controller gains are a funcmon of the plam
parameters, the tuned system is & function of only the plant paramet:rs
Thus. in the case of the tuned system, Figure 1 can be represented in the
form of Figure 3, where M is a linear dme invanant transfer funcuon
depending only on 8. When the functional dependence of A 1s umpor-
tant, we will write M (8p 5) (s is the Laplace mansform vanabie).

Let M be parntioned such that the submatrix My, i« the transfer func-
tion from d to v.

Definition 1 - The control law defined by K an* f, is @-robusih siabiliz-
ing (given perfect parameter information) if ar . only if

(i) SOM (8, ) is strictly stable for all 6pe3p
and

sup Lo ;11904
(i) 9’"% HAlG < 1 [.‘_'..'__.‘_;"_"__ } <o
PESP L iiruot wo et

When s control law is robustly subilizing in this sense, the system wall be
said to have funed s.stem O-robustmess or perfect parameter informanon
o©-robustness.

It is well known that, except for trivial degenerate cases which may
be neglected, condition (ii) is equivalent to

(i) e,':pe, (1M (8p ) S-) < 1.

This definition s simply the usual definition of strict robust stabihity,
except that now we require it be satisfied for each candidate tuned system.
Note that "!ir 1i% is bounded implies that )y 1194 is bounded” is
guaranteed for all aliowed A and 8, if and oaly if the mned sysiem has
0-robustness.




Definifion 2 : For a particular o-robustly stable tuned system M, the O-
Fobust performance level, denoted a®(M), is defined w be the smallest
number C such that the following holds:
For any choice of input and output matrices defining r, and y,,
there exist finite constants C,, Cy, and C, (which may depend on
the input and output matrices defining r, and y,) such that

Hy N8 € C lir 194 + Cylir, N9 (132)
1y, 1199 € Collr 1192 & Cylir, 1194 13b)
for all # and for all d such that 11d 119 < Iy }iS!, (13¢)

The small gain theorem {19] and o-robust stability of M guarantees
that a®(M) is a well-defined finite number.

Definition 3 : The muned-system G-robust performance guaraniee is defined
to be

.= . SUP ]
T'M) : 0,0, M)
The o-robust performance gusrantee resembles the notion of robust

performance of muldvariable control theory to the extent that it is a
bounded-gain definigon, as indicated by the following lemma.

Lemma | - Whenr, =0,

sup sup Hy 194
e, 1 NaNg <1 2 | }sEn).
P€Tp Hr 11 o0 lir 1194

The definition of a® is such that it gives an approximate measure of
performance even if very small modeling errors elsewhere in the stuchoe
have been neglected, as indicated by the following lemma.

Lemma 2 :
sup
lim reL® Uy 1194
R Hd 1194 g v 119 L = aO(M).
||"||GJ SEH)“HcJ Hp 1104

vyl =Midrr)

This structural robustmess property is crucial to the engineering utility
of the value of a®(M). In practice, one prefers not to represent every
extremely small error such as roundoff noise in every control computation.
Instead, one characterizes the larger modeling uncerminties with some sont
of bound which approximates one’s intuition sbout the acnal modeling
errors, and derives robust performance measures based on the mathemancal
characterizaton of the uncertinty. These performance measures are useful
if the actual performance is accepuably insensitive to slight deviations in
the approximate mathematical charscterization of the uncertainty. The
sructural robustness property above is & fundamental form of insensitviry
w slight deviations in uncertainty characterization.

The definition of & is such that it is the tightest stucturally-robust @
priori bound possible on the gain from r to y, for the wned system.

Remark: the robust peformance definition above ignores the effect of
initial conditions on performance. However, when inital condiuon
responses can be represented as exogenous disturbances with an @ prion
known bound, the above framework can incorporaie their effects. In this
paper, we will examine only asymptotic performance as time approaches
infinity for systems with fading memory. and therefore the inital condition
effect on performance is pull, and need not be included in the robust per-
formance definitions.

Remark: the central problems of robust multivariable contol theory
are (1) o find analysis techniques 1o determine the numerical value of the
robust performance levels of a sysiem (e.g., a®(M)), and (2) to find syn-
thesis techniques to make the robust performance levels as favorable as
possible. This paper will not address these questions. Instead, we will
show that regardless of the robust contol techniques spplied. the adaptive
sysem's subiliry and asymptotic performance guarantee will equal those of
the tuned system given perfect parameter information. In effect, the partic-
ulsr robust control design method which produces f and X (Figure 1)
and the method for calculating a(M ) are irrelevant to the results of this
peper. Of course, in practice, the robust contol design step is of great

imporance

IV. Robust Parameter Estimation

This section summarizes the essennal detals of [12). [11], wath some
minor modifications.

A. Estimation Problem Formularion

The estimation algorithm to follow will depend on an error equaton
which arises in a general class of direct ({10] and [9]) and indwrect ([11])
adaptive control sysiems, which are compatble with the representanon of
Figure 1.

Note, from Figure 1 that one can constuct g = (G3)'Gp - Gyzup,
and from g and up one can casily consguct ¢, and v using the known
value of G. Then one can construct ¢ () = g(t) - 8f(130(7), which
sarisfies

e(t) =0T (W) +d()+d, (1) (14)
d = Av (15
Id, 1194 < d, (1), (16)

In the sbove, d;, ¢ and v are known scalar signals, ¢ is a known vector
signal, 8 is the unknown parameter error vecior, and A is the unknown
unstructured plant perturbation.

B. Adjusoment Law Definition

Let ¥,. €;. and €, be small positive constants, with £; 2 €;. An upper
bound on £; will be specified later in the secuon on stabiiry and asymp-
totic performance; the parameters are otherwise arbitrary.

We define the parameter adjustment by

(1) =8 (1) + d(1) + d, (1), 1€(0.1]). amn

I(1) := 1Im, 1% = Wy 1S — g (1) (18)
Y)20

Wr)yissuchthat {¥) =0 if J() Sg;ligne (19)

Y 2y, ifl()2e1161194

t

q() = ée‘”‘"”oum,mdt (20

‘%ép(l)=ll"ﬁ')q(l)) 21
where x denotes the projection into the set 8p (ie., 6p(r) is not allowed to
exat GP ).

Remark: A recursive realization of the above may be obtuned by
differennanng the integral equanors for ¢ and h+i19', and may be foun?
in [12] as well.

C. Discussion

The above parameter adjustment bas the interpretaton of a gradient
scheme o minimize lin, 119, with a reladve deadzone (y vananon). The
deadzone, pictured in Figure 4, has a heuristic explanation.

Yo

ot

g loll” eallel]

Figure 4. Adaptation Gain Constraints




- Note that the, known property of d as given by (15) and the 1-1%
bound on 4 is 11d 11 g lv1i%. Thus when /(1) <O, it may be that
0p (1) = 0: the assertion that 1, () = d (1) + d, (1) is not contradicied by
the norm bound. Thus the definition of Y ensures that the adjustment is
disabled when the parameter error § is indistinguishable from zero in some
sense, based on measured signals. The inclusion of a nonzero e, adds o
cerain srrictness w definition of "distinguishable™ to prevent adjustment
when the parameter error is arbitrarily close to “indistinguishable from

On the other hand, when /() > 0, one can deduce from (17) that

z 1(¢)

9pN1 2 e 2)
The minimum parameter sd;ustment gain ¥, is imposed when 16, (1)1 is
disunguishably “wo large,” that is, greater than e;. Later we will choose
€; 10 correspond 10 parameter errors which large enough to cause a loss of
robust stability or performance. The net effect is this: it is impossible o
bave unstable behavior (or worse-than-specified performance) without hav-
ing adaptation turned on (¥(r) 2 Y, > O).

D. Parameter Convergence Consequences

Let 8(1) denote the euclidean distance between the estimate 8 (1) and
the set of valid plant parameters 8p.

Theorem 1 , "Monotone Error Reduction:”
Equations (17) through (21) imply

—;— 8%)5—21(:)[“71,”"’ - ftv 1184 -Zx(,)]“m”w <0 Vi,
with equaliry if and only if d/d: é,(r) = 0.

Theorem 2 , "Asyprotic Time-Invariance:”

'lim! é,(.') = é,_ exists.

Taking any fixed (though unknown) choice of 8, €@, and the associ-
ated fixed choice of A in the open unit ball in H*, one can define the
asymptotc plant parameter error

6p.=6p - 6p_ (23)
and the asymptoac contoller parameter vector
8ca =1 (8p). Q4

Since f. is Lipschitnan on the orbit of interest, 8¢, is the limit of 6. (1),
and 6. (1) inhents the uniform boundedness of 8, which is apparent from
Theorem 1 and the compactness of 8;.

V. Stability and Asymptotic Performance

We have not shown convergence of the parameter error © zero. In
general, this does not occur, as parameter identifiability is excitation depen-
dent, and we have pot made assumptions regarding the excitation.
Nonetheless, one can bypass the question of parameter convergence and
directly deduce robust subility and performance properties of the overall
system using properues of the idendficadon laws alone.

A. Swiement of Resuls
Recall that ¢, is & free parameter in the identification laws.

Theorem 3, "L1°-BIBO and Asymptotic Performance:” Given
(G1) the control law is o-robustly stbilizing given perfect parameter
informarion (as defined in section 1),
(G2) the desagn rule f, is lipschitzian,
(G3) that the robust perameter estimation laws of section IV are used,
(G4) reLZ~L",

it follows that
(A) for €, chosen sufficiently small, all signals shown in Figure | are

in L2090,
If in addition,
(GS) 6>0.
it follows that
(B) for any @, > 0, there exists a sufficiently mmall choice of €, such
that
Uy 19 € @O(M) + a;)ilr 1% + elr) .wbae,h‘” €r) =0

Implication (A) of Theorem 3 is s statement of BIBO suabiliry. When
© = 0, the subility is in the sense of the usual L2 norm. For 6 > 0, the
BIBO propenty is true with respect to a norm which is simular 10 the L2
porm, but with fading memory.

Implicatdon (B) of Theorem 3 is & swaxment of asymptooc perfor-
mance. In effect, the guaranteed asymptotc performance of the adapuve
system can be made as close as desired to the guaranteed performance of
the system given perfect parameter information, as defined in secoon M.

B. Choice of the Key ldensificarion Coefficiens

Theorem 3 involved the choice of the parameter €, which panly
defines the adaptive gain. This section shows that the proper choice is
governed by s simple rule: the adapution must be “rurmed on” when the
parameter errors are large enough to produce unacceptable behavior.

Note that 6p = 6p_+ 6., and that 6.(1) = 6, + (B, (1) - 6,.)
One can therefore represent the system of Figure 1 in the form shown in
Figure 5 (with g being an arbitrary gain). In the figure, M’ is the asymp-
totic system, except for residual errors. It is a mned system, albeit possibly
tuned for the wrong plant.

The value to this representation is this: since M is a tuned system
containing po uncertainty and parameterized by 6, _€6,, the robustess
propertics of M” can be evaluated a priori by taking the worst case over
6,, as in section ML

Note that with §,_ = 0, the system of Figure 5 is effectively the
same as that of Figure 3. Granted, M" has additicnal outputs g¢ and w
which are internal to M, and M’ is & function of the asympionc esumate
6p.. while M is a function of the true parameters 6,. Stll, the robustness
properties involve the image of ©, in M-space (or M -space) and this
image is the same for M and M (modulo added outputs for M’ ), it follows
that M’ has o-robust stability in the presence of A if and only if M has o-
robust suability.

d A: v

Noo

r——

ro W

D6 O - 8,5

Figure 5. Complete System

Now let us conceptually expand the uncertainty set to allow
18,1 S 8. (28

Let M’ be parttioned so that v, = [3‘?] is regarded as the first
output vector, that is, M’ , is the transfer funcnon from n. to R‘° Let
T° be defined in the same manner as that of 87, except with v, taking

the place of v and with IIv 1197 + g 116115 in place of live, 1% m
(13¢c).

Lemma 3 : Uf the original system had perfect parameter informanon o-
robust subility, then for some g, > 0, g S g, imples that the system of
Figure 5 has g-robust subility.

Lemma 4 : For any a; > 0, there exists 8 g,(@;) >0 such that g S g,
implies A°M ") < B°M) + a;.

The choice of t; indicated by Theorem 3 is the followang' €:< g,
immplies BIBO-L > subility, and ¢, < g, (a,) implies an asymptonc perfor-
mance level of a®(M) + a;.




Now let us conceprually expand the uncertanty set to allow
’ 18,1 S g 25

Let M’ be parunoned so that v, = [gvo} 15 regarded as the first

output vector, that 1s. M", is the transfer function from n_ to 3‘? . Let

&° be defined in the same manner as that of &°, except with v, taking
the place of v and wath 11v 119 4 2 11901197 in place of v, 1% 1n
(13¢).

Lemma 3 . If the ongminal system had perfect parameter informanon o-
robust stability, then for some g, > 0, g < g, implies that the system of
Figure 5 has o-robust stability.

Lemma 4 . For any @, > 0. there exisis a g,(a;) > 0 such that g S g,
imphies TO9M ) < 88M) + a,.

The choice of €; indicated by Theorem 3 1s the following: €; < g,
implies BIBO-L <9 stability, and €, < 8 (@) implies an asymptotic perfor-
mance level of a%(M) + a,.

These choices have a heuristic explanation. The lemmas state that
small residual parameter errors are not destabilizing, or do not cause viola-
uon of a given performance ovjective. The choice of €, will guarantee that
the adaptation gain is bounded away from zero whenever the parameter
error nomm 1s disunguishably larger than the level which 1s tolerated by the
robustness of the perfect parameter informanon tuned system. Because the

value of €; depends orniy on M’ and not on Bp.,. 11 can be determined a
rrwor

V1. Conclusions and Directions

Thus paper shows that if a lipschitzian control law provides robustness

set. and 1if the specified robust parameter adjustment laws are apphed 1n
lieu of knowledge of the correct parameter vector, then the overall adaptve
system provides L2-BIBO sability. Furthermore, when the norm used con-
tains any degree of exponennally fading memory. the asymptotic perfor-
mance guarantee is effectively the same as one would obtain with perfect
parameter nformanon. No persmisiency of excitation assumptons were
requirec, and nonzero 1nital conditions were allowed.

In addipon 10 these theoreocal properues, the conwol laws of this
paper have certain pracucal ments. The parameter adjustment makes
engineenng sense in that 1t connnually improves the parameter estmate to
the greatest degree possible consistent with the nonparamemc uncertainty
assumpnons, unlike stabilizing compensator existence results and impracti-
cal dense search constructions. Furthermore, the full magnitude of uncer-
tunty which can be tolerated by the non-adapuve system with parameter
knowledge can be tolerated by our adapuve svstem, unlike earher “robust-
ness 10 sufficiendy small perrurbaoons” results. Finally, it 1s a non-
mystenous result, the simpie engineering heunsuc of robust control and
plus robust parameter adjustment produce stability in a traceable fashion.
These are important stndes toward practicality.

Sdll, these results fall short of a complete practical theory in at least
two important respects. First, the transient performance is not quanufied,
and may be extemely poor for some plants and some command inputs.
Second. the uncerain parameters were assumed constant, while adaptve
control is often most valuable when the unknown parameters vary in ume.
Further research is required 10 overcome these difficulties.
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